SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS"

Transcripción

1 1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se sabe que Ana tiene m veces el dinero que tiene Nicolás. dinero que tiene cada uno. Basándote en un estudio de la compatibilidad del sistema anterior, es posible que Ana tenga el triple de dinero que Nicolás? (b) Si se supone que m = 3, cuánto dinero tiene Ana? 103. PAU Universidad de Oviedo Fase ESPECÍFICA OPCIÓN A junio 2010 Las toneladas de combustible consumidas por el turno de mañana son igual a m veces las toneladas consumidas por el turno de tarde. Además se sabe que el turno de tarde consume m toneladas de combustible menos que el turno de la mañana. (a) Plantea un sistema de ecuaciones (en función de m) donde las incógnitas x e y sean las toneladas de combustible consumidas en cada turno. Basándote en un estudio de la compatibilidad del sistema anterior, es posible que el turno de mañana consuma el doble de combustible que el de tarde? (b) Si se supone que m = 2, cuánto consume el turno de mañana? 101. PAU Universidad de Oviedo Septiembre 2009 Una empresa realizó una venta de aceite de girasol y de oliva. Si el litro de aceite de oliva costara el doble que el de girasol, el dinero total obtenido con la venta de los aceites sería euros. Si el litro del aceite de oliva fuera 2 euros más caro que el de girasol, el dinero total habría sido euros. (a) Plantea un sistema de ecuaciones (en función del precio del litro de aceite de girasol, que puedes llamar m) donde las incógnitas x e y sean el número de litros vendidos de girasol y oliva. De acuerdo a su compatibilidad es posible que el precio del aceite de girasol fuera de 2 euros? (b) Encuentra el número de litros vendidos de cada tipo si m = PAU Universidad de Oviedo Fase GENERAL OPCIÓN A septiembre 2010 Un restaurante recibe mensualmente un pedido de x litros de licor e y litros de vino. En Enero el litro de licor costaba m euros, al igual que el litro de vino, lo que supuso que el coste del pedido fue de 220 euros. En Febrero, el precio del licor se duplicó y el del vino se incrementó en un euro, lo que llevó al restaurante a pagar 380 euros por el pedido (a) Plantea un sistema de ecuaciones (en función de m) donde las incógnitas sean x e y. Basándote en un estudio de la compatibilidad del sistema anterior, es posible que el precio del litro de licor en Enero haya sido de 1 euro? (b) Resuelve el sistema para m = 2. Utiliza dicho resultado para determinar cuanto costaría el pedido en Marzo, si en dicho mes el litro de licor y el de vino costaban 3 euros cada uno. 99. PAU Universidad de Oviedo Septiembre 2008 Una empresa ofrece cierto producto a minoristas (a un precio de 400 euros por unidad) y mayoristas (a un precio por unidad desconocido, y que puedes llamar m). Con las ventas de este mes se han obtenido en total euros. Por otra parte, la cantidad obtenida con las ventas a minoristas es la misma que la que se habría obtenido vendiendo 480 unidades del producto a los mayoristas. (a) Plantea un sistema de ecuaciones (en función de m) donde las incógnitas (x, y) sean el número de unidades vendidas a cada tipo de cliente. Basándote sólo en un estudio de la compatibilidad del sistema es posible que el precio para los mayoristas sea de euros por unidad? (b) Resuelve el sistema para m = En base a esto, si se vendió alguna unidad a los mayoristas, es posible que fuera a un precio de euros?

2 2 Del aula a la PAU 100. PAU Universidad de Oviedo Junio 2009 Un camión transporta bebida envasada en botellas y latas, y se quiere averiguar el número de cajas que transporta de cada tipo de envase. Cada caja de botellas pesa 20 kilos, pero se desconoce el peso de cada caja de latas. Se sabe además que el peso total de las cajas de botellas es 100 kilos mayor que el de las cajas de latas, y que hay 20 cajas de botellas menos que de latas. (a) Plantea un sistema de ecuaciones (en función del peso de cada caja de latas, que puedes llamar m) donde las incógnitas (x, y) sean el número de cajas transportadas de cada tipo de envase. Basándote en un estudio de la compatibilidad del sistema es imposible que cada caja de latas pese lo mismo que la de botellas? (b) Encuentra el número de cajas de cada tipo de envase sabiendo que m es PAU Universidad de Oviedo Fase ESPECÍFICA OPCIÓN B septiembre 2010 Un pack A consta de m entradas a un parque de atracciones y m 1 noches en un hotel del parque y cuesta 340 euros. Otro pack B consta de 10 entradas y 9 noches de hotel en el mismo parque y cuesta 740 euros. el precio de una entrada al parque y el precio de una noche en el hotel. Basándote en un estudio de su compatibilidad, existe algún valor de m para el que el sistema tenga infinitas soluciones? (b) Si el número de noches de hotel en el pack A fuese de 4, cuánto costaría una entrada al parque? 109. PAU Universidad de Oviedo Fase Específica Opción A Ordinaria 2011 Tenemos una bolsa con dos tipos de monedas: buenas y falsas. Se sabe que las monedas falsas pesan 2 gramos y las buenas 4 gramos, siendo 100 gramos el peso total de las monedas. También se sabe que el número de monedas falsas más m veces el número de monedas buenas es 70. el número de monedas de cada tipo. Basándote en un estudio de la compatibilidad del sistema anterior, es posible que m sea igual a 2? (b) Suponiendo que m es igual a 4, cuántas monedas buenas hay? 113. PAU Universidad de Oviedo Fase GENERAL OPCIÓN A junio 2012 Un tren realiza un viaje directo entre dos capitales. El viaje lo realiza por dos tipos de vías, por la primera circula siempre a 100 Km/h y por la segunda circula siempre a m Km/h. El recorrido total del viaje es de 1240 Km y la duración del mismo es de 11 horas. número de horas que circula por cada tipo de vía. Basándote en un estudio de la compatibilidad del sistema anterior, es posible que la velocidad a la que circula por el segundo tipo de vía sea también de 100Km/h? (b) Suponiendo que la velocidad a la que circula por el segundo tipo de vía es 120 Km/h, cuánto tiempo ha estado circulando por el primer tipo de vía? 114. PAU Universidad de Oviedo Fase ESPECÍFICA OPCIÓN A junio 2012 Una tienda vende bolsas de caramelos a 2 euros cada una y bolsas de gominolas a 4 euros cada una. La recaudación de un determinado día por estos dos conceptos ha ascendido a 200 euros y se sabe que el número de bolsas de caramelos que han vendido ese día es m veces el número de bolsas de gominolas. (a) Plantea un sistema de ecuaciones (en función de m) donde las incógnitas x e "y" sean el número de bolsas de cada tipo que se han vendido ese día. Basándote en un estudio de compatibilidad del sistema anterior, es posible que se hayan vendido el doble de bolsas de caramelos que de gominolas? (b) Suponiendo que se han vendido el triple de bolsas de caramelos que de gominolas, Cuántas bolsas de gominolas se han vendido?

3 PAU Universidad de Oviedo Fase Específica OPCIÓN B junio 2012 Una academia de idiomas da clases de español a un total de "m" alumnos, entre los de nivel básico y los de nivel avanzado, con los que recaudan 3000 euros. Los alumnos de nivel básico pagan "m" euros al mes, mientras que los de nivel avanzado pagan el doble. (a) Plantea un sistema de ecuaciones (en función de m) donde las incógnitas sean "x" e "y" sean el número de alumnos de cada tipo en las clases de español de la academia. Basándote en un estudio de compatibilidad del sistema anterior, es posible que los alumnos de nivel básico paguen 40 euros al mes? (b) Si los alumnos de nivel básico pagan 50 euros al mes, cuántos alumnos de nivel avanzado hay? 117. PAU Universidad de Oviedo Fase GENERAL OPCIÓN B julio 2012 Cada acción de BBA ha dado una ganancia de 6 euros y cada acción de NKO ha dado una ganancia de "m" euros. Un inversor había comprado acciones de ambos tipos, lo que le supuso una ganancia total de 800 euros, pero está arrepentido de su inversión, porque si hubiese comprado la mitad de acciones de BBA y el doble de NKO, su ganancia total habría sido de 1150 euros. número de acciones compradas de cada tipo. Basándote en un estudio de la compatibilidad del sistema, existe algún valor de m para que el sistema tenga más de una solución? (b) Si la ganancia por cada acción de NKO fue de 5 euros, cuántas acciones de NKO había comprado? 119. PAU Universidad de Oviedo Fase GENERAL OPCIÓN A junio 2013 Una gran superficie vende dos productos estrella: reproductores de DVD y televisores, con cada reproductor pierde 200 euros y con cada televisor gana 400 euros, obteniéndose un día determinado unos beneficios de euros por la venta de ambos tipos de productos. Se sabe además que el número de reproductores de DVD que han vendido ese día es m veces el número de televisores. número de televisores y reproductores de DVD vendidos. Basándote en un estudio de la compatibilidad del sistema anterior, es posible que se hayan vendido el doble de reproductores de DVD que de televisores? (b) Suponiendo que se ha vendido el mismo número de televisores que de reproductores de DVD, cuántos televisores se han vendido? 122. PAU Universidad de Oviedo Fase ESPECÍFICA OPCIÓN B junio 2013 En un teatro hay localidades de dos clases: butacas de patio y butacas de segundo piso, cuyos precios son 20 y 10 euros, respectivamente. Determinado día, la recaudación total fue de 4000 euros. Además se sabe que el número de localidades de butacas de segundo piso que se vendieron fue m veces el número de localidades vendidas de butacas de patio. número de localidades vendidas de cada tipo. Basándote en un estudio de compatibilidad del sistema anterior, es posible que se hayan vendido el triple de localidades de butacas de segundo piso que de butacas de patio? (b) Suponiendo que se vendieron el doble de localidades de butacas de segundo piso que de localidades de butacas de patio, cuántas localidades de butacas de patio se vendieron? 124. PAU Universidad de Oviedo Fase ESPECÍFICA OPCIÓN A JULIO 2013 En una fábrica trabajan a dos turnos diarios. En el turno de mañana se producen m piezas más que en el de la tarde. Además se sabe que el beneficio económico que obtienen por cada pieza fabricada es de m euros y que los beneficios diarios son de 5025 euros. número de piezas producidas en cada turno.

4 4 Del aula a la PAU (b) Basándote en un estudio de la compatibilidad del sistema anterior, es posible que el beneficio por pieza sea de 5 euros? En caso afirmativo, cuántas piezas se producen diariamente en la fábrica? 125. PAU Universidad de Oviedo Fase General Opción A JUNIO 2014 Un bar recibe el pedido diario de refrescos y cervezas, por el que paga 6 euros, siendo el precio de cada refresco de 20 céntimos de euro y el de cada cerveza de m céntimos de euro. Si se intercambiasen los precios unitarios de los refrescos y las cervezas, habría pagado 6 euros y 50 céntimos. número de refrescos y el número de cervezas adquiridos ese día. Para qué valores de m el sistema anterior tiene solución? En caso de existir solución, es siempre única? (b) Cuántas cervezas habría comprado si cada cerveza costase a 30 céntimos de euro? 127. PAU Universidad de Oviedo Fase Específica Opción A junio 2014 Una fábrica de tabletas de chocolate ha usado 200 kilogramos de chocolate y 100 litros de leche en la producción de dos tipos de tabletas A y B. Cada tableta de tipo A usa 0.2 kilogramos de chocolate y 0.1 litros de leche y cada tableta de tipo B usa m kilogramos de chocolate y 0.2 litros de leche. el número de tabletas producidas de tipo A y B, respectivamente. Para qué valores de m el sistema tiene solución? En caso de existir solución, es siempre única? (b) Si cada tableta de tipo B precisa de 0.4 kg de chocolate y se produjeron 200 tabletas de tipo B, cuántas se habrían producido de tipo A? 129. PAU Universidad de Oviedo Fase General Opción A julio 2014 Una tienda de discos ha vendido en el último mes discos compactos y elepés por un importe de euros. Cada disco compacto se vendió por 8 euros y cada elepé por 10 euros. Se sabe además que el número de discos compactos vendidos fue m veces el número de elepés. número de discos compactos y elepés vendidos ese mes. (b) Basándote en un estudio de la compatibilidad del sistema anterior, es posible que se hayan vendido el triple de discos compactos que de elepés? En caso afirmativo, cuántos discos compactos se vendieron? 130. PAU Universidad de Oviedo Fase Específica Opción A julio 2014 Un cajero automático solo dispone de billetes de 10 euros y 20 euros. El total de dinero en dicho cajero es de euros. Se sabe además que el número de billetes de 10 euros es m veces el número de billetes de 20 euros. número de billetes de 10 euros y de 20 euros, respectivamente, que hay en el cajero. (b) Basándote en un estudio de la compatibilidad del sistema anterior, es posible que en el cajero haya el triple de billetes de 10 euros que de 20 euros? En caso afirmativo, cuántos billetes hay en total en el cajero? 098. PAU Universidad de Oviedo Junio 2004 Un individuo realiza fotografías con una cámara digital. Sabe que cada fotografía de calidad normal ocupa siempre 0.20 megabytes de memoria. Cada fotografía de calidad óptima ocupa siempre una cantidad A de megabytes, pero el individuo no la conoce. Esta semana ha llevado a revelar 24 fotografías que le han ocupado un total de 9.2 megabytes de memoria. (a) Plantea un sistema de ecuaciones (en función de A) donde las incógnitas sean el número de fotos de cada clase que ha realizado. Estudia la compatibilidad del sistema. (b) Hay alguna cantidad de megabytes que es imposible que ocupe cada foto de calidad óptima? (c) La semana pasada también hizo 24 fotos y ocupó 9.2 megabytes de memoria en total. Es posible que el número de fotos de cada tipo fuera diferente al de esta semana?

5 PAU Universidad de Oviedo Junio 2002 En una farmacia se comercializan 3 tipos de champú de cierta marca: normal, con vitaminas y anticaspa. Se sabe que el precio al que se vende el normal es de 2 euros y el de vitaminas es de 3 euros. Se desconoce el precio al que vende el anticaspa. Por otro lado, el dinero total obtenido por las ventas de los 3 tipos de champú el mes pasado fue de 112 euros y el dinero obtenido en ventas con el champú normal fue 56 euros inferior al dinero total obtenido en ventas con el resto. Además, el dinero total obtenido en ventas con el champú de vitaminas y el anticaspa fue el mismo que el que hubiera obtenido vendiendo 28 unidades del anticaspa y ninguna de las demás. (a) Plantea un sistema de ecuaciones (en función del precio desconocido del champú anticaspa, que puedes llamar por ejemplo m) donde las incógnitas (x, y, z) sean las unidades vendidas el mes pasado de cada tipo de champú. (b) Qué puedes concluir sobre el precio del champú anticaspa a partir de un estudio de la compatibilidad del sistema? (c) Si se sabe que el número de unidades vendidas del anticaspa fue 20, utiliza el resultado del apartado (b) para calcular las unidades vendidas de los otros PAU Universidad de Oviedo Junio 2001 Un agente inmobiliario puede realizar 3 tipos de operaciones: venta de un piso nuevo, venta de un piso usado y alquiler. Por la venta de cada piso nuevo recibe una prima de PTAS. Si la operación es la venta de un piso usado recibe PTAS. Se desconoce la prima cuando la operación es un alquiler. Este mes el número total de operaciones fue 5, la prima total por la venta de pisos fue superior en PTAS a la obtenida por alquileres y la prima total por venta de pisos nuevos fue el triple que por alquileres. (a) Plantea un sistema de ecuaciones (sin resolverlo) para obtener el número de operaciones realizadas (en función del valor desconocido de la prima de alquiler). (b) Indica una prima a la que es imposible que se hayan pagado los alquileres. (c) Indica tres primas a las que es posible que se hayan pagado los alquileres. (d) Si la prima de alquileres fue de PTAS, cuántas operaciones de cada tipo se realizaron? (*) En homenaje a nuestra querida peseta 110. PAU Universidad de Oviedo Fase General Opción A Extraordinaria 2011 Juan y Luis son dos amigos que en total tienen 10 hijos. Un tercer amigo, Javier, tiene m hijos más que Juan y m veces los de Luis. número de hijos de Juan y Luis. Para qué valores de m el sistema anterior tiene solución? En caso de existir solución, es siempre única? (b) Si Javier tiene el doble de hijos que Luis, cuántos hijos tiene Luis? 095. ACTIVIDAD PROPUESTA En una granja se venden pollos, pavos y perdices; los pollos y los pavos, a razón de 2 y 1.5 /Kg, respectivamente, aunque de las perdices no se acuerda (supongamos que son "m" /kg). En cierta semana los ingresos totales de la granja ascendieron a Además se sabe que la cantidad de pollo vendida superó en 100 Kg a la de pavo y que se vendió de perdiz la mitad que la de pavo. (a) Plantea un sistema de ecuaciones (en función de "m") para averiguar la cantidad vendida de cada tipo de carne. (b) Estudia la compatibilidad del sistema, en función de "m". Puedes dar algún precio al que sea imposible haber vendido las perdices?

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Un bar recibe el pedido diario de refrescos y cervezas, por el que paga 6 euros, siendo el precio de cada refresco de 20 céntimos de euro y el de cada

Más detalles

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X DP. - AS - 59 7 Matemáticas ISSN: 988-379X 5 Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa en cajas de 5 gramos y su precio es de, la marca B lo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS

RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS "" "a" "n" "" DP. - AS - 59 7 Mateáticas ISSN: 988-79X RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS DE ENUNCIADO VERBAL CON PARÁMETROS 6 - PAU - Universidad de Oviedo J Un agente inobiliario puede realizar tipos

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

RESOLUCIÓN DE PROBLEMAS

RESOLUCIÓN DE PROBLEMAS RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 159

7Soluciones a los ejercicios y problemas PÁGINA 159 7Soluciones a los ejercicios y problemas PÁGINA 159 Pág. 1 S istemas de ecuaciones. Resolución gráfica x + y = 3 1 Representa estas ecuaciones: x y = 1 a) Escribe las coordenadas del punto de corte. b)escribe

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

http://www.youtube.com/watch?v=puen0s0idwc http://www.youtube.com/watch?v=fhmvwv5wfuo http://www.youtube.com/watch?v=38nysgkjxdg

http://www.youtube.com/watch?v=puen0s0idwc http://www.youtube.com/watch?v=fhmvwv5wfuo http://www.youtube.com/watch?v=38nysgkjxdg .- Sistema ecuaciones lineales por Gauss Resuelve por Gauss 3 7 3 3 3 3 6 http://www.outube.com/watch?vpuen0s0idwc.- Sistema ecuaciones lineales por Gauss Resuelve por Gauss 3-3 5-3 -0 0 http://www.outube.com/watch?vfhmvwv5wfuo

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS. RESUELTOS EN ABIERTO PAU Universidad de Oviedo Junio 996 005. En una confitería

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

Para resolver estos problemas podemos seguir tres pasos:

Para resolver estos problemas podemos seguir tres pasos: RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una

Más detalles

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

Problemas de proporcionalidad

Problemas de proporcionalidad Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

NÚMEROS Y OPERACIONES

NÚMEROS Y OPERACIONES NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.

Más detalles

gastado 1/3 del combustible que llevábamos. Si al final quedaron 20 l, cuál es la capacidad del depósito?

gastado 1/3 del combustible que llevábamos. Si al final quedaron 20 l, cuál es la capacidad del depósito? FICHA 4: 58 problemas de planteamiento de ecuaciones y sistemas RECORDAR: A la hora de resolver un problema que requiera el planteamiento de una ecuación o un sistema se recomienda: Leer atentamente el

Más detalles

ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO

ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO CURSO 10-11 ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO:.; Nº:. Los contenidos mínimos para la prueba extraordinaria de septiembre se encuentran en la programación, que se puede consultar

Más detalles

6 SISTEMAS DE ECUACIONES

6 SISTEMAS DE ECUACIONES 6 SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 6.1 Halla las soluciones de la ecuación 2x 6y 28 sabiendo el valor de una de las incógnitas. a) x 5 c) y 1 e) y 3 b) x 10 d) y 0 f) x 1 2 a) x 5 2 5 6y 28

Más detalles

PROBLEMAS Tema 7 Sistema Métrico Decimal

PROBLEMAS Tema 7 Sistema Métrico Decimal PROBLEMAS Tema 7 Sistema Métrico Decimal 1. Un atleta sale a correr todos los días para entrenar. Si cada día recorre 15 km 7hm 9 dam 6 m, Cuántos km recorre a la semana? 2. Si un paquete de caramelos

Más detalles

Actividades de ampliación

Actividades de ampliación MATEMÁTICAS º SECUNDARIA CUADERNO DE ACTIVIDADES DE AMPLIACIÓN Nombre: Curso: Fecha de entrega: MATEMÁTICAS º ESO Números naturales. Divisibilidad. Explica cómo se puede calcular mentalmente cada una de

Más detalles

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 ACTIVIDADES DE REPASO MATEMÁTICAS 1º ESO NOMBRE: GRUPO:. Actividades a realizar: 1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 2) Calcula: a) 4 6 + 3 + 9-2 3 = b) 6 (3 + 7) -

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos

Más detalles

MATEMÁTICAS 2ºESO Curso: 2011-2012 ACTIVIDADES PARA ALUMNOS DE 3º E.S.O. QUE TIENEN PENDIENTE MATEMÁTICAS DE 2º E.S.O. PRIMERA PARTE 1.

MATEMÁTICAS 2ºESO Curso: 2011-2012 ACTIVIDADES PARA ALUMNOS DE 3º E.S.O. QUE TIENEN PENDIENTE MATEMÁTICAS DE 2º E.S.O. PRIMERA PARTE 1. MATEMÁTICAS ºESO Curso: 011-01 ACTIVIDADES PARA ALUMNOS DE º E.S.O. QUE TIENEN PENDIENTE MATEMÁTICAS DE º E.S.O. PRIMERA PARTE 1. Calcula: a 6 8 1 10 6 1 1 8 + + + ( ( ( + ( ( ( + + ( ( 7 8 6 9 7 d. Realiza

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

Carrera: Técnico Superior en Programación

Carrera: Técnico Superior en Programación 1 Sistema de dos ecuaciones lineales Resolver los siguientes sistemas de dos ecuaciones lineales en forma analítica y gráfica. Verificar los resultados obtenidos. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Más detalles

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13.

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13. Ejercicios de números naturales con soluciones 1 Tres amigos han juntado 40 para comprar un regalo a otro amigo. El primero puso 12 y el segundo, 3 más que el primero. Cuánto puso el tercero? El primero

Más detalles

PROBLEMAS ECUACIONES 1er GRADO

PROBLEMAS ECUACIONES 1er GRADO PROBLEMAS ECUACIONES 1er GRADO 1.- Dos amigos juntan el dinero que tienen, uno tiene el doble que el otro. Se gastan 20, y les quedan 13 Cuánto dinero tiene cada uno? 2.- He comprado 8 cuadernos y he pagado

Más detalles

10) 45 : {-2 + 12 : (-7 + 3) + 12 [ (-24) : ( -3 5 + 7) ] + 5} =

10) 45 : {-2 + 12 : (-7 + 3) + 12 [ (-24) : ( -3 5 + 7) ] + 5} = REPASO DEL CURSO (ENTREGAR EN SEPTIEMBRE) OPERACIONES COMBINADAS 1) 9:3 4 (4 + 3):3= Sol: 11 ) 3 7 (4 ) :6 + (10 14:7)= Sol: 15 3) 4:6 + 4 5 (3 5)= Sol: 4) -5(-3)-(-7) (-4)+ (-6)(-8)3= Sol: 131 5) 6 +

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador

Más detalles

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

2 3º) Representar gráficamente la función: y (Junio 1996)

2 3º) Representar gráficamente la función: y (Junio 1996) 4 1º) Dada la función y. Calcula a) Dominio y punto de corte. b) Regiones y simetría. c) Monotonía y etremos. d) Asíntotas y gráfica. e) Recorrido y continuidad. http://www.youtube.com/watch?v=iazce_pvedq

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado:

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado: PARTE - Matemáticas pendientes de 3º ESO 00- NOMBRE: 4º GRUPO:. Resuelve gráficamente los siguientes sistemas de ecuaciones e indica que tipo de sistema son: x x x 3 4. Indica, para cada representación

Más detalles

PORCENTAJE Y PROPORCIONALIDAD

PORCENTAJE Y PROPORCIONALIDAD PORCENTAJE Y PROPORCIONALIDAD EL PORCENTAJE En una escuela el 15% de los alumnos son rubios, el 35% de los alumnos son morenos y el 50% de los alumnos son castaños. Que el 15% de los alumnos sean rubios

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales

IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales SOLUCIONES PROBLEMAS DE NÚMEROS NATURALES 1.- Francisco tiene 75. Roberto tiene 13 más que Francisco. Luis tiene 21 menos que Roberto. Cuánto tienen entre los tres? Francisco: 75 Roberto: 75 + 13 = 88

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 170

8Soluciones a los ejercicios y problemas PÁGINA 170 PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,

Más detalles

Matemáticas Problemas matemáticos 4º E.P.

Matemáticas Problemas matemáticos 4º E.P. Matemáticas Problemas matemáticos 4º E.P. Nombre: Curso: Una casa costaba el año pasado 137 284, y ahora cuesta 140 594. Cuánto ha aumentado el precio de la casa? Durante la jornada de la mañana, un taxista

Más detalles

Cuaderno de problemas. Nivel 1.

Cuaderno de problemas. Nivel 1. Obj. Resolución de problemas de la vida diaria. Cuaderno de problemas. Nivel 1. Nombre: Curso: Fecha: 19 Obj. Resolución de problemas de la vida diaria. 1. Antonio recorrió ayer 35 kilómetros y hoy ha

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Sistemas de ecuaciones Cuando aparecen varias incógnitas en un problema, resulta más sencillo resolverlo planteando más de una ecuación con más de una incógnita. Un sistema de ecuaciones es un conjunto

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B septiembre de 1999 Parte General Apartado B Duración: 1 hora 30 minutos 1.- Un alumno ha obtenido 7,1 y 8,3 en las dos primeras evaluaciones de matemáticas. Qué nota debe sacar en la tercera evaluación

Más detalles

1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran?

1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran? 1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran? 2.- Un cine tiene capacidad para 240 personas. Cada entrada cuesta 7,50 y esta tarde se han

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

PROBLEMAS de EDADES. 5. Un padre tiene 42 años y su hijo 7. Dentro de cuánto tiempo la edad del hijo será la cuarta parte de la del padre?

PROBLEMAS de EDADES. 5. Un padre tiene 42 años y su hijo 7. Dentro de cuánto tiempo la edad del hijo será la cuarta parte de la del padre? PROBLEMAS de EDADES 1. Cuatro alumnos tienen juntos 50 años. Hallar sus edades respectivas sabiendo que cada uno tiene 3 años más que el que le sigue en edad. 2. Preguntado un padre por la edad de su hijo,

Más detalles

PROBLEMAS. 4. Tengo 5 duros y 7 pesetas para repartir entre cuatro niños. Cuánto toca a cada uno? Cuántos duros y pesetas?.

PROBLEMAS. 4. Tengo 5 duros y 7 pesetas para repartir entre cuatro niños. Cuánto toca a cada uno? Cuántos duros y pesetas?. NOMBRE:... NIVEL:... FECHA:... 1. Los alumnos de 6º organizaron un sorteo de fin de curso. Vendieron los números del 1 al 23, del 32 al 48, del 54 al 62 y del 67 al 75 a 8 pesetas cada uno, cuánto dinero

Más detalles

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20 Estudiar en el libro de Texto: No PROBLEMAS. PROPORCIONALIDAD (1) Proporcionalidad directa e inversa Ejemplo 1. Proporcionalidad directa En un diario leemos que los anuncios que se pueden insertar en él

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos:

MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos: TEMA 7. SISTEMA METRICO DECIMAL 1. 2. Para pasar de una medida de superficie inferior a otra inmediatamente superior: a) Se multiplica el resultado de la medida por 100. b) Se multiplica el resultado de

Más detalles

El peso será de. .. kg. Obtuvo. .. euros. Tardará. .. minutos. Pagará

El peso será de. .. kg. Obtuvo. .. euros. Tardará. .. minutos. Pagará 6º de Ed. Primaria Problemas matemáticos Nombre:.. 1. En una granja se han vendido 3.888 huevos a 3 la docena. Cuánto ha sido toda la venta de los huevos? La venta fue de 2. Un comerciante compra 400 litros

Más detalles

Parque colegio Santa. Ana 4º de Primaria. Silvia Pintado

Parque colegio Santa. Ana 4º de Primaria. Silvia Pintado Parque colegio Santa. Ana 4º de Primaria Resuelve las siguientes operaciones: Ordena de mayor a menos los siguientes números: 23.456 42.075 362.908 12.003 40.100 Resuelve las siguientes operaciones: Resuelve

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

PROBLEMAS DE FRACCIONES

PROBLEMAS DE FRACCIONES . Una modista ha comprado un metro y medio de tela roja y tres cuartos de metro de tela azul. Cuántos metros de tela se ha llevado? de metro de tela.. En una tienda, he comprado un cuarto de kilo de queso,

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 196

10Soluciones a los ejercicios y problemas PÁGINA 196 0Soluciones a los ejercicios y problemas PÁGINA 96 Pág. E presiones algebraicas Llamando a un número indeterminado, asocia cada enunciado con la epresión que le corresponde: a) El doble del número. b)

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

EJERCICIOS PAU UMBRAL RENTABILIDAD PUNTO DE EQUILIBRIO

EJERCICIOS PAU UMBRAL RENTABILIDAD PUNTO DE EQUILIBRIO EJERCICIOS PAU UMBRAL RENTABILIDAD PUNTO DE EQUILIBRIO Umbral de Rentabilidad. Costes, Ingresos y Beneficios El alumno debe diferenciar claramente entre costes, ingresos y beneficios, así como calcular

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO 1.- Igualdades. Las expresiones en donde aparecen el signo =, se llaman igualdades. Ejemplo: 5 = 7-2 ; x + 2 = 9 Toda igualdad consta de dos miembros, el primer miembro ( lo escrito antes del signo igual

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

4º ESO OPCIÓN B Bloque II: Álgebra. Aplicaciones ecuaciones, inecuaciones y sistemas: Problemas.

4º ESO OPCIÓN B Bloque II: Álgebra. Aplicaciones ecuaciones, inecuaciones y sistemas: Problemas. Matemáticas 4º ESO OPCIÓN B Bloque II: Álgebra Aplicaciones ecuaciones, inecuaciones y sistemas: Problemas. NOTA: Si encuentras algún posible error en las soluciones de estos ejercicios comunica número

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles