UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano."

Transcripción

1 UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado por dos rectas numéricas, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada eje de las abscisas o de las equis (x), y la vertical, eje de las ordenadas o de las yes, (y); el punto donde se cortan recibe el nombre de origen. El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. Las coordenadas se forman asociando un valor del eje de las X y uno de las Y, respectivamente, esto indica que un punto se puede ubicar en el plano cartesiano con base en sus coordenadas, lo cual se representa como: P (x, y) Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento: 1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si son positivas o hacia a izquierda si son negativas, a partir del punto de origen, en este caso el cero. 2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza cualquier punto dadas sus coordenadas.

2 Ejemplos: Localizar el punto A ( -4, 5 ) en el plano cartesiano. Este procedimiento también se emplea cuando se requiere determinar las coordenadas de cualquier punto que esté en el plano cartesiano. Determinar las coordenadas del punto M. Las coordenadas del punto M son (3,-5). De lo anterior se concluye que: Para determinar las coordenadas de un punto o localizarlo en el plano cartesiano, se encuentran unidades correspondientes en el eje de las x hacia la derecha o hacia la izquierda y luego las unidades del eje de las y hacia arriba o hacia abajo, según sean positivas o negativas, respectivamente.

3 Doña Lupe nos ha dicho que su farmacia está dentro del centro de la ciudad. Supongamos que deseamos saber la ubicación exacta de la farmacia de Doña Lupe: Una vez que ya estamos en el centro le preguntamos a un policía para que nos oriente. El policía nos ha dicho que caminemos 5 cuadras hacía el este y 6 cuadras hacía el norte para llegar a la farmacia. La cantidad de cuadras que tenemos que caminar las podemos entender como coordenadas en un plano cartesiano. Lo anterior lo podemos expresar en un plano cartesiano de la siguiente manera: Para el problema planteado, el origen del plano será el punto de partida que es en donde le preguntamos al policía sobre la ubicación de la farmacia. Cada punto del plano cartesiano tiene una única forma de escritura y se llama par ordenado. El punto P (2,3) es un par ordenado. El punto Q (3,2) es otro par ordenado

4 Por lo tanto el punto P no es igual al punto Q. Si ubicamos dos puntos en el plano cartesiano y los tenemos graficada una recta. unimos, Ubiquemos los puntos R(6,4) y S(10,8) en el plano cartesiano, al unirlos obtenemos una línea recta. Ejemplo: En el plano cartesiano siguiente encontrarás la representación de los siguientes pares ordenados: (1; 1); (-3/2; 2); (-4; -4); (3/2;-3/2). Distancia entre dos puntos Cuando los puntos se encuentran ubicados sobre el eje x o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas. Ejemplo: La distancia entre los puntos (-4,0) y (5,0) es = 9 unidades. Cuando los puntos se encuentran ubicados sobre el eje y o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas.

5 Ahora si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda determinada por la relación: Para demostrar esta relación se deben ubicar los puntos A(x 1,y 1 ) y B(x 2,y 2 ) en el sistema de coordenadas, luego formar un triángulo rectángulo de hipotenusa AB y emplear el teorema de pitágoras. Ejemplo: Calcula la distancia entre los puntos A (7,5) y B (4,1) d = 5 unidades Punto medio es el punto que divide a un segmento en dos partes iguales. El punto medio de un segmento, es único y equidista de los extremos del segmento. Cumpliendo esta última condición, pertenece a la mediatriz del segmento. La fórmula para determinar el punto medio de un segmento en el plano, con coordenadas: (x 1,y 1 ) y (x 2,y 2 ) es: [(x1 + x2) / 2] + [(y1 + y2) / 2] Segmentos Dados dos puntos A y B, se le llama segmento AB a la intersección de la semirrecta de origen A que contiene al punto B, y la semirrecta de origen B que contiene al punto A. Luego, los puntos A y B se denominan extremos del segmento, y los puntos de la recta a la que pertenece el segmento (recta sostén), serán interiores o exteriores al segmento según pertenezcan o no a este.

6 Ejercicios Propuestos 1. Ubicar en un plano cartesiano los siguientes puntos: (-2, 3), (2, -3), (2, 3), (-2, -3), (0, 5), (5, 0), (4, 4), (-4, -4) Relaciones 2. Tres vértices de un rectángulo son los puntos (2, -1); (7, -1) y (7, 3). Hallar el cuarto vértice y el área del rectángulo sol: (2, 3); 20. Una relación binaria cartesiano, en los conjuntos A 1,A 2 es un subconjunto del producto Una relación binaria es una relación entre dos conjuntos. Dominio: conjuntos con todos aquellos valores para los cuales la función esta definida. Rango: conjunto de valores que se obtienen al aplicar la función a cada elemento del dominio. Funciones Se llama función a una relación en la cual a cada elemento del conjunto de partida (dominio) le corresponde sólo un elemento (o imagen) del conjunto de llegada (codominio). Esto se expresa: f Y = f(x) o x y El dominio de una función es el conjunto de existencia de la misma, o sea los valores para los cuales la función está definida. Entonces, el dominio de una función f es el conjunto de todos los valores que puede tomar la variable independiente. Se denota Dom f o Df. El conjunto imagen, también llamado codominio, está formado por los valores que alcanza la función. Entonces, la imagen de una función f es el conjunto de todos los valores que toma la variable dependiente.

7 Tipo de funciones: Función Inyectiva: Es aquella donde cada elemento del conjunto de partida o dominio tiene diferente imagen en el conjunto de llegada o codominio. Es decir a los elementos del conjunto de llegada les corresponde a lo sumo un elemento del conjunto de partida. Observa en el gráfico siguiente como TODOS los elementos del conjunto X, tienen diferente imagen en el conjunto Y. Función Sobreyectiva Es aquella donde cada elemento del conjunto de llegada (codominio) es imagen de algún elemento del conjunto de partida o dominio. Es decir el conjunto de llegada e imagen son iguales. En el gráfico siguiente observa como TODOS los elementos del conjunto Y, son imagen de los elementos del conjunto X. Función Biyectiva Es aquella función donde se cumplen ambas propiedades inyectiva y sobreyectiva al mismo tiempo.

8 Funciones reales Función afín: todas las funciones de R R cuya representación grafica es una línea recta la llamamos función afín y su forma general es: F (x)= ax + b a y b Є R - Función cuadrática: es una función de la forma f(x)= ax2+bx+c con a, b y c números reales y a 0. - Función inversa: una función f(x) tiene inversa, f -1 (x) si y solo si f(x) es una función biyectiva. - Función exponencial de base a: Es una función de la forma y= f(x) =ax, donde a es un numero real positivo distinto de uno.una función de la forma y= f(x) = ax, donde a > 0 y a de 1, es una función exponencial, donde a es la base de la exponencial. - La Función logarítmica: para a> 0 y a 1 el logaritmo en base a de un numero x>0 es el componente al que hay que elevar la base para obtener dicho numero. Log a x= y es equivalente a x= ay. Funciones trigonométrica. - Función seno: es un función real tal que a cada ángulo α, expresado en radianes, se le hace corresponder un numero real denotado como sen x. Sen: R R tal que sen (α)= y - Función coseno: es una función real de variable real de variable real que a cada ángulo α medido en radianes se le hace corresponder un numero real denotado como cos α. Cos: R R tal que cos (x)= y - La función tangente: Es una función de variable real definida como el cociente f(x) = sen x, siendo cos α. Coseno de x distinto de 0 denotada por f(x) = tag x, de forma tal que cada ángulo, expresado en radianes, le haga corresponder el valor de su tangente. Representación grafica: Simetría: es una propiedad que se encuentra con frecuencia en los fenómenos naturales: acción y reacción, materia y antimateria, izquierda y derecha objeto e imagen, etc. Traslaciones Sean dos puntos P y Q cualquiera del plano, y sean P y Q` sus respectivas imágenes por el movimiento T entonces T es una traslación si los dos segmentos PP y QQ`. a) son de la misma longitud. b) Tienen direcciones paralelas. c) Tienen el mismo sentido.

9 Funciones definidas por intervalo Son aquellas en las cuales la obtención de las imágenes varían de acuerdo al intervalo del eje x que se esta utilizando. Ellas se caracterizan porque contienen varias expresiones algebraicas. Graficación de funciones en el plano cartesiano El plano cartesiano nos sirve para representar gráficamente funciones. En dichas funciones los valores que adquiere Y, dependen de los valores que le asignemos a la variable X. Para representar una función en el plano cartesiano seguimos los siguientes pasos: Resolvamos el siguiente ejemplo: Y = 3X 1.- Elaboramos una tabla de valores colocando en el lado izquierdo los valores de la variable independiente X, mientras que en el lado derecho ubicaremos los resultados la función dada. Damos valores a x, (utiliza números negativos, positivos y el inclusive) (-2), (-1), (0), (1), (2). para cero 2.- Los valores de X los reemplazamos en la función Y = 3X para obtener los valores de Y Y = 3 (-2) = -6 Y = 3 (-1) = -3 Y = 3 ( 0) = 0 Y = 3 ( 1) = 3 Y = 3 ( 2) = Con los datos obtenidos de X y de Y, se forma la tabla de valores (tabla de pares ordenados) 4.- En el plano cartesiano ubicamos los pares ordenados de la siguiente manera: (observa el gráfico) 5.- Al unir los puntos obtenemos una línea recta que corresponde al gráfico de la función Y = 3 x, y que por sus características es la representación de una función lineal.

10 Traslaciones Sea un punto en, un vector del plano. Entonces es el punto trasladado en el vector. Abreviaremos lo anterior diciendo que es el punto trasladado en el vector. Luego definimos: (Traslación de un punto en un vector ) Ejemplo 1: Tomemos el cuadrado, donde,,, Este cuadrado lo queremos trasladar en el vector Figura 4.2: imagenes/ Trasladando un cuadrado Si llamamos al cuadrado trasladado, tenemos que Aplicando la misma idea a todos los vertices del cuadrado, se obtiene:,,,

11 Funciones definidas por intervalos Las funciones definidas para distintos intervalos de x, puede ser discontinua en los puntos de cambio de intervalo, como por ejemplo: La Función parte entera de x, E(x), donde E(x) es el mayor número entero inferior o igual a x, tal que: E(x) x < E(x) + 1. Su curva es una sucesión de segmentos horizontales a distintas alturas. Esta función no es continua en los enteros, pues los límites a la izquierda y a la derecha difieren de uno, pero es continua en los segmentos abiertos (n, n+1) donde es constante. Otras funciones definidas por intervalos son: Función escalón unitario Función signo 3. Determine el dominio de las siguientes funciones: a) f(x) = + b) f(x) = c) g(x) = Ejercicio nº 1.- Halla el dominio de definición de las funciones siguientes: 1 a) y = x x + 1 b) y = x

12 Ejercicio nº 2.- Asocia a cada gráfica su ecuación: 5 c) y = 3 x d) y = 4x 2 I) II) III) IV) Ejercicio nº 3.- Representa la gráfica de la siguiente función: y 3 = x Ejercicio nº 4.- Halla la expresión analítica de la recta cuya gráfica es:

13 Ejercicio nº 5.- Representa la gráfica de la siguiente función: y = x Luego, 4. Trace la gráfica de las siguientes funciones: a) f(x) = (x - 1)(x - 3) b) g(x) = si x < x si -1 x 2 x + 2 si x > 2 5. Determine si la función es par, impar o ninguna de las dos: a) f(x) = x 6 - x b) f(x) = x 3-1 c) f(x) = x / x 6. Hallar la distancia entre los puntos P1 (2, -8) y P2 (3, 5) SOLUCIÓN x 2 x 1 = 3 2 = 1 ; y 2 y 1 = 5 (-3) = Sean P 1 (-1, 1) y P 2 (3, 0) dos puntos en el plano. Determine: Coordenadas del punto medio M del segmento Coordenadas del punto P sobre el segmento tal que SOLUCIÓN En la figura adjunta se ilustra el segmento y los puntos pedidos en a) y Si el punto medio M tiene coordenadas. M (x m, y m ) entonces:

14 Luego, las coordenadas del punto M son. M (1, 1/2) Como entonces Si P(x, y) denota las coordenadas del punto P, se tiene de acuerdo a las fórmulas (5) y (6): Luego, las coordenadas del punto P, son: P 8. Escribir la ecuación de las rectas l, m, n, y r indicada en la figura. SOLUCIÓN Para la recta l, se tiene y = (tan 30º). Para la recta n, se tiene y = (tan 45º). Es decir y = x Igualmente, para la recta m, se tiene: y = (tan 135º) x = (-tan 45º). x = -1.x Esto es, y = -x

15 Ahora, como el punto P(1, 3) g r, se tiene que Luego, y = 3x es la ecuación de la recta r 9. Escribir la ecuación de las rectas l, m, n y r indicadas en la figura SOLUCIÓN Para la recta l, el intercepto con el eje y es b = 1. Además,. Luego, la ecuación de la recta l es: y = x + 1. Para la recta m, b = 1 y Por lo tanto, y = -x + 1 es la ecuación de la recta m. También para la recta n, b = -2 y la ecuación de la recta n, tiene la forma, y = mx 2. Como el punto (2, 0) n, entonces satisface su ecuación, es decir, 0 = 2m 2, de donde m = 1. Por tanto, y = x 2 es la ecuación de la recta n. Para la recta r, se procede como se hizo para l, obteniendo como ecuación: y = 2x + 2.

16 10. Determine las ecuaciones de las rectas l y r que se muestran en la figura adjunta. SOLUCIÓN Para la recta l, se tiene: y 3 = m l (x + 1). Pero m l = tan 135º = - tan 45º = -1 Luego, y 3 = - (x + 1) ó x + y 2 = 0 es la ecuación de la recta Para la recta r se tiene: y 3 = m r (x + 1). Pero, m r = Luego, y 3 = 3(x + 1) ó 3x y + 6 = 0 representa la ecuación de la recta r. 11. Aplique al triángulo de vértices una traslación en el vector. Dibuje la situación utilizando un gráfico. 12. Encuentre qué traslación transforma al triángulo con vértices en el triángulo con vértices

17 13. Encuentre una traslación que anule el efecto de, o sea que, para todo punto. 14. Un robot se puede mover utilizando las instrucciones que recibe con un programa. Un programa no es más que una secuencia vectores, donde cada. Cuando el robot recibe un programa, éste hace una secuencia de movimientos: primero se mueve hacia donde es el punto desde donde inicia su recorrido, luego, se mueve a, y así sucesivamente, hasta que llega a y se detiene. a. Escriba el vector en función de y b. Escriba un programa de modo que si el robot parte en el origen de coordenadas, éste se mueva al punto. c. Muestre que si el robot parte en el origen de coordenadas, entonces no existe ningún programa que le permita llegar a d. Muestre que si el robot parte en el origen de coordenadas, no existe ningún programa que le permita llegar a 15. Demuestre que la traslación preserva distancias, es decir, muestre que si y están a distancia, entonces y también se encuentran a distancia.

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved.

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved. 4.3 Función Logarítmica Copyright Cengage Learning. All rights reserved. Función Logarítmica La función que es inversa de la exponencial f (x) = b x es la función logarítmica. Introducimos el vocabulario

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010 Funciones Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 010 Introducción Es frecuente que se describa una cantidad en términos de otra; por ejemplo: 1.

Más detalles

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas CÁLCULO DIFERENCIAL Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas Cálculo Diferencial UNIDAD 1 2. Funciones y modelos 2.1.

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

Rige a partir de la convocatoria 01-2015

Rige a partir de la convocatoria 01-2015 LISTADO DE OBJETIVOS Y CONTENIDOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DE LOS PROGRAMAS: Bachillerato por Madurez Suficiente Bachillerato de Educación Diversificada a Distancia Este documento

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM

UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM I. DATOS INFORMATIVOS: NIVEL DE EDUCACIÓN: Bachillerato. ÁREA: Matemáticas CURSO: Segundo de bachillerato (1º año de Diploma) PARALELO:

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles

Funciones. Capítulo 1

Funciones. Capítulo 1 Capítulo Funciones En la base de muchos modelos matemáticos se halla el concepto de función. La descripción de un fenómeno que evoluciona con respecto al tiempo se realiza generalmente mediante una función

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

APUNTES DE CÁLCULO DIFERENCIAL.

APUNTES DE CÁLCULO DIFERENCIAL. APUNTES DE CÁLCULO DIFERENCIAL. Prof. Jaime A Pinto. Departamento De Ciencias Básicas, Unidades Tecnológicas de Santander. Textos Universitarios 2013 Contenido Introducción... 1 1 Capítulo 1 "Desigualdades".......................................................

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Funciones Ejercicios básicos sobre funciones www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-008 Contenido. Introducción. Ejercicios Introducción Los aspectos básicos a estudiar

Más detalles

INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015

INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 DOCENTE: Juan de Dios Varelas GRADO: 5º A-B-C-D- E - F TEMA: EL CUBO Y ORTOEDRO FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 ESTANDAR: construyo y descompongo figuras y sólidos a partir de condiciones

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 República de Costa Rica Ministerio de Educación Pública PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 Basado en los programas de estudio en Matemáticas aprobados por el Consejo Superior de Educación

Más detalles

Funciones uno-uno, sobre y biunívocas

Funciones uno-uno, sobre y biunívocas Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo

Más detalles

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 0-0 Opción A Ejercicio, Opción A, Modelo 5 de 0 ['5 puntos] Un alambre de longitud metros se divide en dos trozos Con el primero se forma

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles