TEMA VI: Cálculo de recipientes de pared delgada


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA VI: Cálculo de recipientes de pared delgada"

Transcripción

1 TEMA VI: Cálculo de recipientes de pared delgada 1. Introducción. Envolventes de pequeño espesor Podemos definir una envolvente como aquel sólido elástico en el que una de sus dimensiones es mucha menor que las otras dos. En una envolvente no cabe hablar de línea media, pero sí de superficie media, entendiendo como tal, la superficie tomada por los puntos que equidistan de las dos superficies que limitan la envolvente. Cuando la superficie media es un plano, la envolvente recibe el nombre de placa.

2 En este tema se van a estudiar exclusivamente aquellas envolventes que cumplen las siguientes premisas: Envolventes de pequeño espesor. La relación entre su radio de curvatura y su espesor es mayor de 10. Son superficies de revolución (cono, esfera, cilindro, etc.) Se encuentran cargadas simétricamente respecto a dicho eje. A esta categoría pertenecen elementos constructivos tan habituales como cisternas y tanques de agua, cúpulas de edificios o tuberías de conducción de fluidos.

3 CALDERINES

4 DEPÓSITOS

5 CÚPULAS

6 TUBERÍAS

7 Toma el nombre de superficie de revolución aquella superficie que se genera al girar una curva llamada generatriz alrededor de una recta que se conoce como eje de revolución. Por sencillez se supondrá que el eje de revolución es el eje vertical OZ. También vamos a adoptar como generatriz una curva plana contenida en un plano vertical que pasa por el eje de revolución. A este plano se le llama plano meridiano. La intersección de la superficie de revolución con el plano meridiano se le llama meridiano. El plano tangente es el plano perpendicular al plano meridiano que es tangente a la generatriz Para la resolución de estas envolventes de revolución de pared delgada, se aplica la teoría de membrana, en la que se considera que no hay ni esfuerzos cortantes ni momentos en ningún punto de la envolvente. Por lo tanto todos los esfuerzos que se producen son normales. Por otra parte se admite un reparto uniforme de tensiones en todo el espesor de la envolvente.

8 La aplicación más importante de esta teoría es a depósitos de pared delgada sometidos a una presión interior p. que, en general, estará provocada por un gas, o un líquido. La presión no tiene que ser necesariamente constante, pero sí es necesario que presente simetría respecto al eje de revolución y varíe de forma continua.

9 Se ha aislado un elemento del recipiente de espesor e limitado por dos planos meridianos y por dos secciones normales a las líneas meridianas en el que se ha designado: ρ m el radio de curvatura del meridiano de la superficie media. En el caso de que la generatriz sea plana y esté contenida en el plano meridiano, ρ m coincide con el radio de curvatura de la generatriz en ese punto ρ t el radio de curvatura de la sección normal perpendicular al meridiano. Corresponde a la distancia del punto de la superficie de revolución al eje de revolución a lo largo de la normal al plano tangente. σ m la tensión en dirección del meridiano o tensión meridiana. σ t la tensión en dirección normal a la sección meridiana o tensión circunferencial. ds 1 longitud del elemento de arco meridiano. ds 2 longitud del elemento de arco perpendicular al arco de meridiano.

10 Sobre el elemento considerado actúan las siguientes fuerzas: La debida a la presión interior p: pds 1 ds 2 La producida por la tensión meridiana σ m : σ m eds 2 La engendrada por la tensión circunferencial σ t : σ t eds 1 Proyectando las citadas fuerzas sobre el plano meridiano y considerando que se obtiene la condición de equilibrio sen dθ 1 dθ 1 ; sen dθ 2 dθ 2 pds 1 ds 2 2σ m eds 2 dθ 1 2 2σ teds 1 dθ 2 2 = 0

11 y como ds 1 = ρ m dθ 1 ; ds 2 = ρ t dθ 2 Sustituyendo, pρ m dθ 1 ρ t dθ 2 2σ m eρ t dθ 2 dθ 1 2 2σ t eρ m dθ 1 dθ 2 2 = 0 y dividiendo por dθ 1 dθ 2 pρ m ρ t σ m eρ t σ t eρ m = 0 y dividiendo por eρ m ρ t se obtiene ecuación σ m ρ m + σ t ρ t = p e Esta ecuación se conoce como ecuación de Laplace. Sin embargo, para calcular estas tensiones necesitamos otra ecuación que se obtendrá al examinar las condiciones de equilibrio de la parte inferior de la envolvente de radio r.

12 Si P es la componente vertical (en la dirección del eje de revolución OZ) de la resultante de todas las fuerzas exteriores, la ecuación buscada es: σ m 2πr e senθ = P que nos da directamente el valor de la tensión meridiana. En la componente vertical P se incluye: P l : Peso del líquido contenido por debajo del plano de corte P e : Peso de la envolvente P z : Fuerza resultante de la presión existente en el plano de corte. Si A es el área de la intersección de la envolvente con el plano de corte, en el caso de gases, P z = pa mientras que en el caso de líquidos: P z = γha donde γ es el peso específico del líquido y h es la distancia a la superficie libre.

13 Una vez obtenida la tensión meridiana, se halla la tensión circunferencial aplicando la ecuación de Laplace. Al no existir tensiones tangenciales sobre las caras del elemento considerado, las tensiones σ m y σ t son principales. A lo largo del espesor, entre las paredes interior y exterior de la envolvente, existe otra tensión principal que varía entre los valores p y 0, Pero al tratarse de una envolvente de pared delgada, las tensiones meridiana y circunferencial son mucho mayores que p, por lo que se prescinde de esta última en comparación a las dos primeras, es decir, se considera igual a cero. Por lo tanto, el material de la envolvente se encuentra en un estado tensional plano. Así, si aplicamos el criterio de plasticidad de von Mises, se obtiene σ eq = (σ t σ m ) 2 + σ t 2 + σ m 2 2 = σ t 2 + σ m 2 σ t σ m < σ u

14 2. Recipientes cilíndricos y esféricos sometidos a presión interna. 2.1 Cilíndrico En este caso ρ m = y ρ t = r por lo que la ecuación de Laplace se reduce a: σ t r = p e σ t = pr e Para calcular σ m la ecuación de equilibrio nos da De donde σ m 2πr e = P z = p πr 2 σ m = pr 2e En este cálculo no se ha tenido en cuenta el peso de la envolvente. También se ha considerado que la presión interna es ejercida por un gas, por lo que también se desprecia el peso del mismo.

15 2.2 Esférico En este caso ρ m = ρ t = r. También se verifica por simetría que σ m = σ t = σ. La sola aplicación de la ecuación de Laplace nos permite obtener las tensiones σ r + σ r = p e σ = pr 2e

16 3. Depósitos cilíndricos abiertos conteniendo líquidos Sea un depósito cilíndrico abierto de radio R que contiene un líquido de peso específico γ, suspendido de su parte superior. En este caso ρ m = y ρ t = R. La tensión circunferencial se obtiene mediante la aplicación de la ecuación de Laplace σ t r = p e σ t = pr e Pero en este caso p varía en función de la cota y p = γ(h y) Sustituyendo en la ecuación de Laplace, obtenemos γr(h y) σ t = e

17 Es decir, la tensión circunferencial varía de forma lineal. El valor máximo se presenta en la parte inferior del depósito (y = 0) σ tmáx = γrh e 2πReσ m = P z + P l = γ(v ABCD + V CDEF ) = γπr 2 h Por lo tanto σ m = γrh 2e La tensión meridiana es constante en todo el depósito.

18 4. Conducciones cilíndricas sometidas a una presión. En el caso de una conducción cilíndrica de diámetro exterior D o y espesor e por el que circula un fluido que ejerce una presión p σ t = p(d o e) 2e La situación más desfavorable se da cuando el fluido circula, ya que en ese caso σ m = 0 σ eq = σ t 2 + σ m 2 σ t σ m = σ t mientras que en el caso de que no circule σ m = σ t 2 σ eq = σ t 2 + σ m 2 σ t σ m = σ t 0,87 σ t

19 Por lo tanto, el espesor de la tubería necesario es: 2eσ t = pd o pe e(2σ t + p) = pd o e = pd o 2σ t + p Para un completo diseño de las tuberías de una instalación es preciso tener en cuenta otros muchos factores. Es por ello preciso consultar la normativa vigente UNE-EN 13480: Tuberías metálicas industriales Otras normas de interés son: UNE-EN 10208: Tubos de acero para tuberías de fluidos combustibles UNE-EN 10216: Tubos de acero sin soldadura para usos a presión UNE-EN 10217: Tubos de acero soldados para usos a presión UNE-EN-10224: Tubos y accesorios en acero no aleado para el transporte de líquidos acuosos, incluido agua para consumo humano. Condiciones técnicas de suministro.

20 Ejemplo 1: El calderín de un compresor almacena aire comprimido a una presión de 800 kpa. Su diámetro interior es 600 mm y está fabricado con acero S275 de 4 mm. Comprobar que no se supera el límite elástico en el punto P según el criterio de von Mises. La tensión circunferencial es: σ t = pr e = , = Pa = 60 MPa Por otra parte la tensión meridiana es: σ m = pr 2e = , = Pa = 30 MPa Por lo tanto σ eq = σ t 2 + σ m 2 σ t σ m = 3σ t 2 = 51,96 MPa < 275 MPa

21 Ejemplo 2: El calderín de la figura está fabricado con tubo soldado helicoidalmente de 1,2 m de diámetro interior, y 12 mm de espesor. El cordón de soldadura forma un ángulo α = 55 con el eje longitudinal. Calcular las tensiones en el cordón si el aire comprimido almacenado en el calderín está a una presión de 900 kpa La tensión circunferencial es: σ t = pr e = , = 45 MPa

22 Por otra parte la tensión meridiana es: σ m = pr = 22,5 MPa 2e Para calcular las tensiones en el cordón es preciso conocer las tensiones de un elemento girado θ = 35 respecto al eje longitudinal del calderín.

23 Para ello se construye el circulo de Mohr del estado tensional en el tubo. El punto A representa las componentes intrínsecas de la tensión en un plano perpendicular a la dirección X correspondiente a la tensión meridiana

24 El punto B representa las componentes intrínsecas de la tensión en un plano perpendicular a la dirección Y correspondiente a la tensión circunferencial El punto D representa las componentes intrínsecas de la tensión en un plano perpendicular a la dirección X correspondiente a dirección normal al cordón de soldadura

25 Por lo tanto: σ D = , ,5 cos σ D = 29,9 MPa 45 22,5 τ D = sen 70 2 τ D = 10,6 MPa

26 El cordón de soldadura forma una hélice de paso p = πd tan θ Por otra parte, el ancho del fleje w es w = p cos θ = πd sen θ La norma UNE-EN :2003 en su capítulo 7 establece como valores límite del ancho del fleje, 0,8 y 3 veces el diámetro exterior del tubo, por lo que el ángulo de la hélice θ puede oscilar entre w = 0,8d θ = 14,75 w = 3d θ = 72,73 En la práctica los valores habituales oscilan entre los 20 y 35.

27 Ejemplo 3: El depósito de la figura está fabricado a partir de dos casquetes semiesféricos de acero S275 de 8 m de diámetro interior y 20 mm de espesor, unidos mediante tornillos. El gas contenido en el depósito está a una presión de 2MPa Se pide: a) Comprobar que no se alcanza el límite elástico en el depósito. b) Indicar el número necesario de tornillos para garantizar la unión si la resistencia a tracción de los tornillos es F t,rd = 176,4 kn.

28 a) La tensión en el depósito es: σ = pr 2e = = 200 MPa Así pues según von Mises σ eq = σ = 200 MPa < 275 MPa

29 b) El carga total que ha de soportar la unión es P z = pa = π 4 2 = 100,53 MN Por lo tanto, el número de tornillos preciso ha de ser mayor de n > P z R t,rd = 100, , = 569,9 Se precisan al menos 570 tornillos para garantizar la unión.

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 1.1.- Determinar la relación mínima entre la longitud y el diámetro de una barra recta de sección circular, para que al girar relativamente

Más detalles

Capítulo 4. Elasticidad

Capítulo 4. Elasticidad Capítulo 4 Elasticidad 1 Ley de Hooke Cuando estiramos o comprimimos un muelle, la fuerza recuperadora es directamente proporcional al cambio de longitud x respecto de la posición de equilibrio: F = k

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

E N G R A N A J E S INTRODUCCION

E N G R A N A J E S INTRODUCCION E N G R A N A J E S INTRODUCCION Un engranaje es un mecanismo de transmisión, es decir, se utiliza para transmitir el movimiento de rotación entre dos árboles. Está formado por dos ruedas dentadas que

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

Capítulo 6. ESFUERZO CORTANTE

Capítulo 6. ESFUERZO CORTANTE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 6. ESFUERZO CORTANTE 6.1 NOCIONES PREVIAS 6.1.0 Previamente a tratar de las tensiones y deformaciones,

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES CAPÍULO 2 CO CEPO DE REIE CIA DE MAERIALE 2.1 I RODUCCIÓ En este capítulo se presenta una revisión de los aspectos más pertinentes para el curso de Diseño I de la teoría de resistencia de materiales. e

Más detalles

1.1 Probetas de sección cuadrada

1.1 Probetas de sección cuadrada ANEXOS En este apartado se muestran todas las gráficas de todos los ensayos realizados en cada uno de los planos. 1.1 Probetas de sección cuadrada Con este tipo de ensayos se pretende estudiar si los resultados

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

Cálculo y elección óptima de un depósito de agua 199

Cálculo y elección óptima de un depósito de agua 199 Cálculo y elección óptima de un depósito de agua 199 CAPÍTULO 6 CONCLUSIONES 6.1.- INTRODUCCIÓN En este capítulo se exponen las conclusiones que se derivan de los distintos estudios desarrollados a lo

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

CONSTRUCCIÓN GEOMÉTRICA DE CUBIERTAS. Geometrical roof construction

CONSTRUCCIÓN GEOMÉTRICA DE CUBIERTAS. Geometrical roof construction JOSÉ ANTONIO GONZÁLEZ CASARES CONSTRUCCIÓN GEOMÉTRICA DE CUBIERTAS Geometrical roof construction INTRODUCCIÓN La resolución de cubiertas (fundamentalmente inclinadas) no debería de plantear mayor dificultad

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría.

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Como proceder: a.-imprima los contenidos de esta guía, el mismo contiene tablas y gráficas importantes para el desarrollo de

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional Curso: Eurocódigo 3 Módulo 4 : Eurocódigo para Estructuras de cero Desarrollo de Una Propuesta Transnacional Lección 10: Resumen: La resistencia de una pieza a tracción se obtiene suponiendo que la sección

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

Agustin Martin Domingo

Agustin Martin Domingo Mecánica de fluidos. Física y Mecánica de las Construcciones.. Martín. Grupo F. ETSM-UPM 1 1. gua de mar de densidad 1,083 g/cm 3 alcanza en un depósito grande una altura de1,52 m. El depósito contiene

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS SISTEMA TERRENAL Normas generales Las antenas para la captación de las señales terrenales se montarán sobre mástil o torreta, bien arriostradas

Más detalles

INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTES DENTALES ENDOÓSEOS TIPO SURGIMPLANT CE gr IV DE LA EMPRESA GALIMPLANT S.L.

INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTES DENTALES ENDOÓSEOS TIPO SURGIMPLANT CE gr IV DE LA EMPRESA GALIMPLANT S.L. LABORATORIO DE INGENIERÍA MECÁNICA ESCUELA SUPERIOR DE INGENIEROS. Cº de los Descubrimientos, s/n 41092 SEVILLA Tlf: 954 48 73 11/12, 954 48 73 88 Fax: 954 46 04 75 INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTES

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Anejo: UNIONES POR TORNILLOS

Anejo: UNIONES POR TORNILLOS Anejo: UNIONES POR TORNILLOS UNIONES POR TORNILLOS 1. DEFINICIÓN Y CLASIFICACIÓN Los tornillos son piezas metálicas compuestas de una cabeza de forma exagonal, un vástago liso y una parte roscada que permite

Más detalles

Ensayo: 10.01. Datos técnicos:

Ensayo: 10.01. Datos técnicos: Sistema completo de conductos de ventilación horizontal resistentes al fuego Promatect L-00. Resistencia al fuego 0 minutos. EI 0 (h o o i) S. LICOF - 66/0 LICOF - 66/0 0.0 Panel de Promatect L 00 de espesor

Más detalles

FLUIDOS IDEALES EN MOVIMIENTO

FLUIDOS IDEALES EN MOVIMIENTO FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

Banco de ensayo de ventiladores

Banco de ensayo de ventiladores Banco de ensayo de ventiladores Área de Mecánica de Fluidos Centro olitécnico Superior Universidad de Zaragoza rof. Francisco Alcrudo Técnico Especialista edro Vidal rof. Javier Blasco 0. Requisitos para

Más detalles

3.- CONCEPTOS BÁSICOS

3.- CONCEPTOS BÁSICOS 3.- ONEPTOS ÁSIOS 3. ESFUERZOS EN RRS: ONVENIO DE SIGNOS Los esfuerzos en los elementos estructurales lineales deberán seguir el convenio de signos que se esquematiza a continuación. Los esfuerzos que

Más detalles

PRÁCTICA No 1 MANOMETRÍA

PRÁCTICA No 1 MANOMETRÍA República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio de Procesos Químicos Operaciones Unitarias I PRÁCTICA

Más detalles

LEGISLACIÓN CONSOLIDADA. TEXTO CONSOLIDADO Última modificación: sin modificaciones

LEGISLACIÓN CONSOLIDADA. TEXTO CONSOLIDADO Última modificación: sin modificaciones Orden ITC/3721/2006, de 22 de noviembre, por la que se regula el control metrológico del Estado en la fase de comercialización y puesta en servicio de los instrumentos de trabajo denominados manómetros,

Más detalles

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES MATERIAL - Dinamómetro de 1 N - Bolas de péndulo (3 al menos)

Más detalles

Medición de la fuerza

Medición de la fuerza Medición de la fuerza LAS FUERZAS PROBLEMÁTICA VECTORIAL En la mecánica clásica, una fuerza se define como una acción susceptible de modificar la cantidad de movimiento de un punto material. De ello resulta

Más detalles

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas 1 Conceptos básicos El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas Índice La mecánica de sólidos y sus componentes La resistencia de materiales El ensayo

Más detalles

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 2 FLUJO DE AIRE A TRAVÉS DE TUBERÍAS Y TOBERAS

Laboratorio de Mecánica de Fluidos. Práctica de Laboratorio 2 FLUJO DE AIRE A TRAVÉS DE TUBERÍAS Y TOBERAS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola Laboratorio de Mecánica de Fluidos Práctica de Laboratorio FLUJO DE AIRE A TRAVÉS DE TUBERÍAS

Más detalles

1.- Resistencia de Materiales

1.- Resistencia de Materiales XI 1 MECÁNICA TÉCNICA TEMA XI 1.- Resistencia de Materiales La asignatura Mecánica Técnica la podemos dividir en dos partes. La primera, desde el tema I al tema X del programa, forma parte de lo que tradicionalmente

Más detalles

GEOMETRÍA 1.- INTRODUCCIÓN:

GEOMETRÍA 1.- INTRODUCCIÓN: GEOMETRÍA 1.- INTRODUCCIÓN: Etimológicamente hablando, la palabra Geometría procede del griego y significa Medida de la Tierra. La Geometría es la parte de las Matemáticas que estudia las idealizaciones

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=fs= obprbiqlp=`lk=bi=`qb= = `ìêëçë=ommtlmu=ó=ommulmv= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw=

Más detalles

CAPÍTULO V ESFUERZOS DEBIDO A FLEXIÓN Y CORTANTE. El objetivo de este capítulo es ilustrar el procedimiento seguido para obtener los esfuerzos

CAPÍTULO V ESFUERZOS DEBIDO A FLEXIÓN Y CORTANTE. El objetivo de este capítulo es ilustrar el procedimiento seguido para obtener los esfuerzos CAPÍTULO V ESFUERZOS DEBDO A FLEXÓN Y CORTANTE El objetivo de este capítulo es ilustrar el procedimiento seguido para obtener los esfuerzos que son producidos por el momento flexionante y la fuerza cortante

Más detalles

TORNILLOS DE POTENCIA

TORNILLOS DE POTENCIA UNIVERSIDAD DE LOS ANDES ESCUELA DE MECANICA CATEDRA DE DISEÑO TORNILLOS DE POTENCIA MÉRIDA 2010 INTRODUCCIÓN A través de estos elementos de maquinas, denominados también tornillos de fuerza, es posible

Más detalles

ENSAYO DE TRACCIÓN UNIVERSAL

ENSAYO DE TRACCIÓN UNIVERSAL BLOQUE II.- Práctica II.-Ensayo de Tracción, pag 1 PRACTICA II: ENSAYO DE TRACCIÓN UNIVERSAL OBJETIVOS: El objetivo del ensayo de tracción es determinar aspectos importantes de la resistencia y alargamiento

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

3. Cargas Estáticas 3.1. INTRODUCCIÓN. Una pieza de una máquina pude fallar por diferentes causas: Excesiva deformación plástica

3. Cargas Estáticas 3.1. INTRODUCCIÓN. Una pieza de una máquina pude fallar por diferentes causas: Excesiva deformación plástica DPTO. INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALE 004 V. BADIOLA. Cargas Estáticas.. INTRODUCCIÓN Una pieza de una máquina pude fallar por diferentes causas: Excesiva deformación elástica Excesiva deformación

Más detalles

INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTRES DENTALES ENDOÓSEOS TIPO SURGIMPLANT CE DE LA EMPRESA GALIMPLANT S.L.

INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTRES DENTALES ENDOÓSEOS TIPO SURGIMPLANT CE DE LA EMPRESA GALIMPLANT S.L. LABORATORIO DE INGENIERÍA MECÁNICA ESCUELA SUPERIOR DE INGENIEROS. Cº de los Descubrimientos, s/n 41092 SEVILLA Tlf: 954 48 73 11/12, 954 48 73 88 Fax: 954 46 04 75 INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTRES

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS 5. PÉRIAS E CARGA EN CONUCTOS CERRAOS O TUBERIAS 5. Perfiles de Velocidad: Laminar y Turbulento 5. Radio Hidráulico para Secciones no Circulares 5.3 Pérdidas Primarias y Secundarias 5.4 Ecuación de arcy

Más detalles

CMT. CARACTERÍSTICAS DE LOS MATERIALES

CMT. CARACTERÍSTICAS DE LOS MATERIALES LIBRO: PARTE: TÍTULO: CMT. CARACTERÍSTICAS DE LOS MATERIALES 3. MATERIALES PARA OBRAS DE DRENAJE Y SUBDRENAJE 03. Tubos y Arcos de Lámina Corrugada de Acero A. CONTENIDO Esta Norma contiene las características

Más detalles

PROBLEMAS DE TRNSMISIÓN DE CALOR

PROBLEMAS DE TRNSMISIÓN DE CALOR TEMODINAMIA Departamento de Física - UNS arreras: Ing. Industrial y Mecánica POBLEMAS DE TNSMISIÓN DE ALO Ejemplo. Pérdida de calor a través de una pared plana onsidere una pared gruesa de 3 m de alto,

Más detalles

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O.

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello seguiremos

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

ANCLAJES Y EMPALMES POR ADHERENCIA

ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.- ANCLAJES ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.1.- Anclaje de barras y alambres rectos traccionados 9.A.1.1.- Expresión general El CIRSOC 201-2005, artículo 12.2.3, indica la siguiente expresión

Más detalles

Equivalencias con el programa oficial de la asignatura de Topografía del Grado en Ingeniería Agronómica

Equivalencias con el programa oficial de la asignatura de Topografía del Grado en Ingeniería Agronómica Equivalencias con el programa oficial de la asignatura de Topografía del Grado en Ingeniería Agronómica Bloque 1: CONCEPTOS BÁSICOS Tema 1: Generalidades Tema 2: Estudio de los errores en Topografía Bloque

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido.

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido. H A C L U C E UNIVERSIDAD DE A CORUÑA Dinámica del sólido rígido con un punto fijo Ana Jesús López Díaz Objetivo Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido

Más detalles

Problemas Capítulo III

Problemas Capítulo III 9 Problemas Capítulo III Sección 3.2.1 Laminado 3.1. Una placa de 40 mm de grueso se reduce a 30 mm en un paso de laminado. La velocidad de entrada = 16m/min El radio del rodillo = 300 mm y la velocidad

Más detalles

Definición de los productos de acero. Definition of steel products. Définition des produits en acier. EXTRACTO DEL DOCUMENTO UNE-EN 10079

Definición de los productos de acero. Definition of steel products. Définition des produits en acier. EXTRACTO DEL DOCUMENTO UNE-EN 10079 norma española UNE-EN 10079 Julio 2008 TÍTULO Definición de los productos de acero Definition of steel products. Définition des produits en acier. CORRESPONDENCIA Esta norma es la versión oficial, en español,

Más detalles

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO 7.1 Descripción En este capítulo se evaluarán las características de los elementos estructurales que componen al edificio y se diseñarán

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e. Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:

Más detalles

1.1 NORMA EUROPEA UNE EN 10255 Tubos de acero no aleados adecuados para la soldadura y el roscado. Condiciones técnicas de suministro

1.1 NORMA EUROPEA UNE EN 10255 Tubos de acero no aleados adecuados para la soldadura y el roscado. Condiciones técnicas de suministro 1 NORMAS DE TUBOS 1.1 NORMA EUROPEA UNE EN 10255 Tubos de acero no aleados adecuados para la soldadura y el roscado. Condiciones técnicas de suministro OBJETO Esta norma europea especifica los requisitos

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Asociación española de fabricantes de tubos y accesorios plásticos

Asociación española de fabricantes de tubos y accesorios plásticos Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.14-009 noviembre 2014 Uniones soldadas de tuberías de PE para conducción de agua y gas. Ensayos de evaluación 1. Introducción

Más detalles

1 SOBREPRESIÓN POR GOLPE DE ARIETE

1 SOBREPRESIÓN POR GOLPE DE ARIETE 1 SOBREPRESIÓN POR GOLPE DE ARIETE Golpe de ariete es el término utilizado para denominar el choque producido en una conducción por una súbita disminución en la velocidad del fluido. El cierre en una válvula

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro

Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro el concreto en la obra editado por el instituto mexicano del cemento y del concreto, A.C. Diciembre 2013 Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2001-2002 MATERIA: DIBUJO TÉCNICO Junio Septiembre R1 R2 INSTRUCCIONES GENERALES La prueba consiste

Más detalles

TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN.

TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN. Félix C. Gómez de León Antonio González Carpena TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN. Curso de Resistencia de Materiales y cálculo de estructuras. Índice. Uniones Soldadas. Introducción. Soldadura al

Más detalles

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos.

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. 1. LEYES DE KEPLER: Las tres leyes de Kepler son: Primera ley Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. a es el semieje mayor de la elipse b es el semieje menor de la

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA HUARAZ PERÚ 2010 I. INTRODUCCIÓN 2.1 CAMPOS ESCALARES

Más detalles

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN 1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren

Más detalles

Ingeniería Gráfica Aplicada

Ingeniería Gráfica Aplicada Acotación Ingeniería Gráfica Aplicada Curso 2010-11 Manuel I. Bahamonde García Índice Acotación 1. Principios generales de acotación 2. Método de acotación 3. Acotación de círculos, radios, arcos, cuadrados

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

NORMA DE INSTALACIONES

NORMA DE INSTALACIONES NO-UTE-OR-0001/02 CAPITULO I-G PUESTAS A TIERRA Y PARARRAYOS 2001-05 ÍNDICE 1.- PUESTAS A TIERRA Y PARARRAYOS... 2 2.- OBJETO... 3 3.- DEFINICIÓN... 3 4.- COMPOSICIÓN... 3 5.- TOMAS DE TIERRA... 8 6.-

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Aislamiento térmico en cañerías y estanques. Fundamentos teóricos, ejemplos prácticos.

Aislamiento térmico en cañerías y estanques. Fundamentos teóricos, ejemplos prácticos. Aislamiento térmico en cañerías y estanques Fundamentos teóricos, ejemplos prácticos. Índice 1. Fundamentos teóricos transferencia de calor. 1.1. Conducción. 1.2. Convección. 1.3. Radiación. 2. Aislamiento

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

SISTEMA DE PLANOS ACOTADOS APUNTES REALIZADOS POR ANTONIO CUESTA

SISTEMA DE PLANOS ACOTADOS APUNTES REALIZADOS POR ANTONIO CUESTA SISTEMA DE LANOS ACOTADOS AUNTES REALIZADOS OR ANTONIO CUESTA El sistema de lanos Acotados o Sistema Acotado constituye, al igual que el Sistema Diédrico, un sistema de representación reversible en el

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS Laboratorio Virtual de niciación al Estudio de la Electrocinética y Circuitos de Corriente EJECCOS ESUELTOS EJECCO La cantidad de carga q (en C) que pasa a través de una superficie de área cm varía con

Más detalles

CAPÍTULO 12 ESFUERZO CORTANTE EN SUELOS

CAPÍTULO 12 ESFUERZO CORTANTE EN SUELOS Corte directo Capítulo 2 CAPÍTULO 2 ESFUERZO CORTANTE EN SUELOS 2. RESISTENCIA AL CORTE DE UN SUELO Esta resistencia del suelo determina factores como la estabilidad de un talud, la capacidad de carga

Más detalles

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria.

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Las propiedades mecánicas describen como se comporta un material cuando se le aplican fuerzas externas. Para propósitos de análisis, las

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Tecnología industrial Serie 4 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B),

Más detalles

SECCION 304 SUB-BASE DE SUELO MEJORADO CON CEMENTO AL 2% DE CEMENTO

SECCION 304 SUB-BASE DE SUELO MEJORADO CON CEMENTO AL 2% DE CEMENTO SECCION 304 SUB-BASE DE SUELO MEJORADO CON CEMENTO AL 2% DE CEMENTO 304.01 DESCRIPCIÓN Esta especificación se aplica a la construcción de partes del pavimento con materiales constituidos de suelo mezclado

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial

Más detalles

Determinación de la resistencia a la flexión del concreto. Diciembre 2008. editado por el instituto mexicano del cemento y del concreto AC

Determinación de la resistencia a la flexión del concreto. Diciembre 2008. editado por el instituto mexicano del cemento y del concreto AC el concreto en la obra editado por el instituto mexicano del cemento y del concreto AC Diciembre 2008 Determinación de la resistencia a la flexión del concreto 16 Problemas, causas y soluciones 59 s e

Más detalles

5. Tensión superficial

5. Tensión superficial 5. Tensión superficial Este concepto es de suma importancia para el propósito de la presente tesis, ya que como se mencionó anteriormente es una de las variables de respuesta para la correlación buscada.

Más detalles